Условие линейной независимости векторов. Критерий линейной зависимости векторов. Дост. условие линейной зависимости

Определение 18.2 Система функций ф , ..., ф п называется л и- нейп о з а в и с и м. о й на промежутке (а, (3), если некоторая нетривиальная 5 линейная комбинация этих функций равни нулю на этом промежутке тождественно:

Определение 18.3 Система векторов ж 1 , ..., х п называет,ся линейно в а в и с и м о й, если некоторая нетривиальная, линейная комбинация этих векторов равна пулевому вектору:

Л Во избежание путаницы мы в дальнейшем будем номер компоненты вектора (вектор-функции) обозначать нижним индексом, а номер самого вектора (если таких векторов несколько) верхним.

"Напоминаем, что линейная комбинации называется нетривиальной, если не все коэффициенты в ней нулевые.

Определение 18.4 Система вектор-функций х 1 ^),..., x n (t) называется линейн о з а в и с и м о й на промежутке, (а, /3), если некоторая нетривиальная линейная комбинация этих вектор-функций тождественно равна на этом промежутке нулевому вектору:

Важно разобраться в связи этих трех понятий (линейной зависимости функций, векторов и вектор-функций) друг с другом.

Прежде всего, если представить формулу (18.6) в развернутом виде (вспомнив, что каждая из х г (1) является вектором)


то она окажется эквивалентной системе равенств

означающих линейную зависимость г-х компонент в смысле первого определения (как функций). Говорят, что линейная зависимость вектор- функций влечет их покомпонентную линейную зависимость.

Обратное, вообще говоря, неверно: достаточно рассмотреть пример пары вектор-функций

Первые компоненты этих вектор-функций просто совпадают значит, они линейно зависимы. Вторые компоненты пропорциональны, значит. тоже линейно зависимы. Однако если мы попробуем построить их линейную комбинацию, равную нулю тождественно, то из соотношения

немедленно получаем систему

которая имеет единственное решение С - С -2 - 0. Таким образом, наши вектор-функции линейно независимы.

В чем причина такого странного свойства? В чем фокус, позволяющий из заведомо зависимых функций строить линейно независимые вектор-функции?

Оказывается, все дело не столько в линейной зависимости компонент, сколько в той пропорции коэффициентов, которая необходима для получения нуля. В случае линейной зависимости вектор-функций один и тот же набор коэффициентов обслуживает все компоненты независимо от номера. А вот в приведенном нами примере для одной компоненты требовалась одна пропорция коэффициентов, а для другой другая. Так что фокус на самом деле прост: для того, чтобы из „покомпонентной" линейной зависимости получить линейную зависимость вектор-функций целиком, необходимо, чтобы все компоненты были линейно зависимы „в одной и той же пропорции".

Перейдем теперь к изучению связи линейной зависимости вектор- функций и векторов. Здесь почти очевидным является тот факт, что из линейной зависимости вектор-функций следует, что для каждою фиксированного t* вектора

будут линейно зависимы.

Обратное, вообще говоря, места не имеет: из линейной зависимости векторов при каждом t не следует линейная зависимость вектор-функций. Это легко увидеть на примере двух вектор-функций

При t = 1, t = 2 и t = 3 мы получаем пары векторов

соответственно. Каждая пара векторов пропорциональна (с коэффициентами 1,2 и 3 соответственно). Нетрудно понять, что для любого фиксированного t* наша пара векторов будет пропорциональна с коэффициентом t*.

Если же мы попытаемся построить линейную комбинацию вектор- функций, равную нулю тождественно, то уже первые компоненты дают нам соотношение

что возможно лишь если С = С 2 = 0. Таким образом, наши вектор- функции оказались линейно независимыми. Опять же объяснение такого эффекта состоит в том, что в случае линейной зависимости вектор- функций один и тот же набор констант Cj обслуживает все значения t, а в нашем примере для каждого значения t требовалась своя пропорция между коэффициентами.

Следующие дают несколько критериев линейной зависимости и соответственно линейной независимости систем векторов.

Теорема. (Необходимое и достаточное условие линейной зависимости векторов.)

Система векторов является зависимой тогда и только тогда, когда один из векторов системы линейно выражается через другие этой системы.

Доказательство. Необходимость. Пусть система линейно зависимая. Тогда, по определению, она представляет нулевой вектор нетривиально, т.е. существует нетривиальная комбинация данной системы векторов равная нулевому вектору:

где хотя бы один из коэффициентов этой линейной комбинации не равен нулю. Пусть , .

Разделим обе части предыдущего равенства на этот ненулевой коэффициент (т.е. умножим на :

Обозначим: , где .

т.е. один из векторов системы линейно выражается через другие этой системы, ч.т.д.

Достаточность. Пусть один из векторов системы линейно выражается через другие вектора этой системы:

Перенесем вектор в правую этого равенства:

Так как коэффициент при векторе равен , то мы имеем нетривиальное представление нуля системой векторов , что означает, что эта система векторов является линейно зависимой, ч.т.д.

Теорема доказана.

Следствие.

1. Система векторов векторного пространства является линейно независимой тогда и только тогда, когда ни один из векторов системы линейно не выражается через другие вектора этой системы.

2. Система векторов, содержащая нулевой вектор или два равных вектора, является линейно зависимой.

Доказательство.

1) Необходимость. Пусть система линейно независимая. Допустим противное и существует вектор системы линейно выражающийся через другие вектора этой системы. Тогда по теореме система является линейно зависимой и мы приходим к противоречию.

Достаточность. Пусть ни один из векторов системы не выражается через другие. Допустим противное. Пусть система линейно зависимая, но тогда из теоремы следует, что существует вектор системы линейно выражающийся через другие векторы этой системы и мы опять приходим к противоречию.

2а) Пусть система содержит нулевой вектор. Допустим для определенности, что вектор :. Тогда очевидно равенство

т.е. один из векторов системы линейно выражается через другие вектора этой системы. Из теоремы следует, что такая система векторов является линейно зависимой, ч.т.д.

Заметим, что этот факт можно доказать непосредственно из линейно зависимой системы векторов.

Так как , то следующее равенство очевидно

Это нетривиальное представление нулевого вектора, а значит система является линейно зависимой.

2б) Пусть система имеет два равных вектора. Пусть для . Тогда очевидно равенство

Т.е. первый вектор линейно выражается через остальные векторы этой же системы. Из теоремы следует, что данная система линейно зависимая, ч.т.д.

Аналогично предыдущему это утверждение можно доказать и непосредственно определения линейно зависимой системы.

Введенные нами линейные операции над векторами дают возможность составлять различные выражения для векторных величин и преобразовывать их при помощи установленных для этих операций свойств.

Исходя из заданного набора векторов а 1 , ..., а n , можно составить выражение вида

где а 1 , ..., а n - произвольные действительные числа. Это выражение называют линейной комбинацией векторов а 1 , ..., а n . Числа α i , i = 1, n , представляют собой коэффициенты линейной комбинации . Набор векторов называют еще системой векторов .

В связи с введенным понятием линейной комбинации векторов возникает задача описания множества векторов, которые могут быть записаны в виде линейной комбинации данной системы векторов а 1 , ..., а n . Кроме того, закономерны вопросы об условиях, при которых существует представление вектора в виде линейной комбинации, и о единственности такого представления.

Определение 2.1. Векторы а 1 , ..., а n называют линейно зависимыми , если существует такой набор коэффициентов α 1 , ... , α n , что

α 1 a 1 + ... + α n а n = 0 (2.2)

и при этом хотя бы один из этих коэффициентов ненулевой. Если указанного набора коэффициентов не существует, то векторы называют линейно независимыми .

Если α 1 = ... = α n = 0, то, очевидно, α 1 а 1 + ... + α n а n = 0. Имея это в виду, можем сказать так: векторы а 1 , ..., а n линейно независимы, если из равенства (2.2) вытекает, что все коэффициенты α 1 , ... , α n равны нулю.

Следующая теорема поясняет, почему новое понятие названо термином "зависимость" (или "независимость"), и дает простой критерий линейной зависимости.

Теорема 2.1. Для того чтобы векторы а 1 , ..., а n , n > 1, были линейно зависимы, необходимо и достаточно, чтобы один из них являлся линейной комбинацией остальных.

◄ Необходимость. Предположим, что векторы а 1 , ..., а n линейно зависимы. Согласно определению 2.1 линейной зависимости, в равенстве (2.2) слева есть хотя бы один ненулевой коэффициент, например α 1 . Оставив первое слагаемое в левой части равенства, перенесем остальные в правую часть, меняя, как обычно, у них знаки. Разделив полученное равенство на α 1 , получим

a 1 =-α 2 /α 1 ⋅ a 2 - ... - α n /α 1 ⋅ a n

т.е. представление вектора a 1 в виде линейной комбинации остальных векторов а 2 , ..., а n .

Достаточность. Пусть, например, первый вектор а 1 можно представить в виде линейной комбинации остальных векторов: а 1 = β 2 а 2 + ... + β n а n . Перенеся все слагаемые из правой части в левую, получим а 1 - β 2 а 2 - ... - β n а n = 0, т.е. линейную комбинацию векторов а 1 , ..., а n с коэффициентами α 1 = 1, α 2 = - β 2 , ..., α n = - β n , равную нулевому вектору. В этой линейной комбинации не все коэффициенты равны нулю. Согласно определению 2.1, векторы а 1 , ..., а n линейно зависимы.

Определение и критерий линейной зависимости сформулированы так, что подразумевают наличие двух или более векторов. Однако можно также говорить о линейной зависимости одного вектора. Чтобы реализовать такую возможность, нужно вместо "векторы линейно зависимы" говорить "система векторов линейно зависима". Нетрудно убедиться, что выражение "система из одного вектора линейно зависима" означает, что этот единственный вектор является нулевым (в линейной комбинации имеется только один коэффициент, и он не должен равняться нулю).

Понятие линейной зависимости имеет простую геометрическую интерпретацию. Эту ин-терпретацию проясняют следующие три утверждения.

Теорема 2.2. Два вектора линейно зависимы тогда и только тогда, когда они коллинеарны.

◄ Если векторы а и b линейно зависимы, то один из них, например а, выражается через другой, т.е. а = λb для некоторого действительного числа λ. Согласно определению 1.7 произведения вектора на число, векторы а и b являются коллинеарными.

Пусть теперь векторы а и b коллинеарны. Если они оба нулевые, то очевидно, что они линейно зависимы, так как любая их линейная комбинация равна нулевому вектору. Пусть один из этих векторов не равен 0, например вектор b. Обозначим через λ отношение длин векторов: λ = |а|/|b|. Коллинеарные векторы могут быть однонаправленными или противоположно направленными . В последнем случае у λ изменим знак. Тогда, проверяя определение 1.7, убеждаемся, что а = λb. Согласно теореме 2.1, векторы а и b линейно зависимы.

Замечание 2.1. В случае двух векторов, учитывая критерий линейной зависимости, доказанную теорему можно переформулировать так: два вектора коллинеарны тогда и только тогда, когда один из них представляется как произведение другого на число. Это является удобным критерием коллинеарности двух векторов.

Теорема 2.3. Три вектора линейно зависимы тогда и только тогда, когда они компланарны .

◄ Если три вектора а, Ь, с линейно зависимы, то, согласно теореме 2.1, один из них, например а, является линейной комбинацией остальных: а = βb + γс. Совместим начала векторов b и с в точке A. Тогда векторы βb, γс будут иметь общее начало в точке A и по правилу параллелограмма их сумма, т.е. вектор а, будет представлять собой вектор с началом A и концом , являющимся вершиной параллелограмма, построенного на векторах-слагаемых. Таким образом, все векторы лежат в одной плоскости, т. е. компланарны.

Пусть векторы а, b, с компланарны. Если один из этих векторов является нулевым, то очевидно, что он будет линейной комбинацией остальных. Достаточно все коэффициенты линейной комбинации взять равными нулю. Поэтому можно считать, что все три вектора не являются нулевыми. Совместим начала этих векторов в общей точке O. Пусть их концами будут соот-ветственно точки A, B, C (рис. 2.1). Через точку C проведем прямые, параллельные прямым, проходящим через пары точек O, A и O, B. Обозначив точки пересечения через A" и B", получим параллелограмм OA"CB", следовательно, OC" = OA" + OB" . Вектор OA" и ненулевой вектор а= OA коллинеарны, а потому первый из них может быть получен умножением второго на действительное число α:OA" = αOA . Аналогично OB" = βOB , β ∈ R. В результате получаем,что OC" = α OA + βOB , т.е. вектор с является линейной комбинацией векторов а и b. Согласно теореме 2.1, векторы a, b, с являются линейно зависимыми.

Теорема 2.4. Любые четыре вектора линейно зависимы.

◄ Доказательство проводим по той же схеме, что и в теореме 2.3. Рассмотрим произвольные четыре вектора a, b, с и d. Если один из четырех векторов является нулевым, либо среди них есть два коллинеарных вектора, либо три из четырех векторов компланарны, то эти четыре вектора линейно зависимы. Например, если векторы а и b коллинеарны, то мы можем составить их линейную комбинацию αa + βb = 0 с ненулевыми коэффициентами, а затем в эту комбинацию добавить оставшиеся два вектора, взяв в качестве коэффициентов нули. Получим равную 0 линейную комбинацию четырех векторов, в которой есть ненулевые коэффициенты.

Таким образом, мы можем считать, что среди выбранных четырех векторов нет нулевых, никакие два не коллинеарны и никакие три не являются компланарными. Выберем в качестве их общего начала точку О. Тогда концами векторов a, b, с, d будут некоторые точки A, B, С, D (рис. 2.2). Через точку D проведем три плоскости, параллельные плоскостям ОВС, OCA, OAB, и пусть A", B", С" - точки пересечения этих плоскостей с прямыми OA, OB, ОС соответственно. Мы получаем параллелепипед OA"C"B"C"B"DA", и векторы a, b, с лежат на его ребрах, выходящих из вершины О. Так как четырехугольник OC"DC" является параллелограммом, то OD = OC" + OC" . В свою очередь, отрезок ОС" является диагональю параллелограмма OA"C"B", так что OC" = OA" + OB" , а OD = OA" + OB" + OC" .

Остается заметить, что пары векторов OA ≠ 0 и OA" , OB ≠ 0 и OB" , OC ≠ 0 и OC" коллинеарны, и, следовательно, можно подобрать коэффициенты α, β, γ так, что OA" = αOA , OB" = βOB и OC" = γOC . Окончательно получаем OD = αOA + βOB + γOC . Следовательно, вектор OD выражается через остальные три вектора, а все четыре вектора, согласно теореме 2.1, линейно зависимы.

Пусть функции , имеют производные предела (n-1).

Рассмотрим определитель: (1)

W(x) называется определителем Вронского для функций .

Теорема 1. Если функции линейно зависимы в интервале (a, b), то их вронскиан W(x) тождественно равен нулю в этом интервале.

Доказательство. По условию теоремы выполняется соотношение

, (2) где не все равны нулю. Пусть . Тогда

(3). Дифференцируем это тождество n-1 раз и,

Подставляя вместо их полученные значения в определитель Вронского,

получаем:

(4).

В определителе Вронского последний столбец является линейной комбинацией предыдущих n-1 столбцов и поэтому равен нулю во всех точках интервала (a, b).

Теорема 2. Если функции y1,…, yn являются линейно независимыми решениями уравнения L[y] = 0, все коэффициенты которого непрерывны в интервале (a, b), то вронскиан этих решений отличен от нуля в каждой точке интервала (a, b).

Доказательство. Допустим противное. Существует Х0, где W(Х0)=0. Составим систему n уравнений

(5).

Очевидно, что система (5) имеет ненулевое решение. Пусть (6).

Составим линейную комбинацию решений y1,…, yn.

У(х) является решением уравнения L[y] = 0. Кроме этого . В силу теоремы единственности решения уравнения L[y] = 0 с нулевыми начальными условиями может быть только нулевым, т. е. .

Мы получаем тождество , где не все равны нулю, а это означает, что y1,…, yn линейно зависимы, что противоречит условию теоремы. Следовательно, нет такой точки где W(Х0)=0.

На основе теоремы 1 и теоремы 2 можно сформулировать следующее утверждение. Для того, чтобы n решений уравнения L[y] = 0 были линейно независимы в интервале (a, b), необходимо и достаточно, чтобы их вронскиан не обращался в нуль ни в одной точке этого интервала.

Из доказанных теорем также следуют такие очевидные свойства вронскиана.

  1. Если вронскиан n решений уравнения L[y] = 0 равен нулю в одной точке х = х0 из интервала (a, b), в котором все коэффициенты рi(x) непрерывны, то он равен нулю во всех точках этого интервала.
  2. Если вронскиан n решений уравнения L[y] = 0 отличен от нуля в одной точке х = х0 из интервала (a, b), то он отличен от нуля во всех точках этого интервала.

Таким образом, для линейности n независимых решений уравнения L[y] = 0 в интервале (a, b), в котором коэффициенты уравнения рi(x) непрерывны, необходимо и достаточно, чтобы их вронскиан был отличен от нуля хоть в одной точке этого интервала.